
Enabling Comparability and Data Mining with the Arelle® Open Source

Unified Model
Authors: Herm Fischer, Mark V Systems Limited and Diane Mueller, XBRLSpy Research Inc.

Research Objective
Two key points of the call for this conference are the role of XBRL in comparability of financial

information and XBRL enabled tools for data mining. The authors participate in an open source platform

for XBRL, known as Arelle, that provides initial capabilities in this area and wish that publication of the

underlying model and API of the current project can lead to continued evolution of both open source

tooling and the understanding of XBRL technology.

XBRL suppliers have necessarily focused on commercial objectives, somewhat making it difficult for

researchers to participate in the direction of the technology and in unencumbered use of XBRL for

research projects. The Arelle platform has been used for both comparability objectives (through

implementation of XBRL Formula and Versioning) and data mining objectives (including a sample GUI for

simple text and formula-based data mining of online XBRL filings).

Methodology
This project began with a goal to support XBRL extension features not widely available, beginning with

Versioning, which provides a formal model of the differences between taxonomies, and evolving to

newly emerging validation (IFRS Global Filer Manual) and full implementation of XBRL formula. The goal

was a compact model-driven architecture that unified these extensions in a manner that was both a

comprehensible and maintainable implementation (in terms of source code size), and easily usable by

the research community (as well as being open sourced).

The XBRL International 2010 Brussels conference presented interim progress of the XBRL Strategic

initiative Abstract Modeling Task Force, which is defining UML models for the XBRL Base Specification

and Dimensions, and UML models from the GRC/XML project, which was modeled from financial

reporting semantics. Both differ. The authors were encouraged to document the model currently in

Arelle, to provide a basis of encouraging the contributing community to both refine the model and

further engage it in research activities.

Overview of unified model approach
This paper describes the unified model using UML. An earlier paper (Fischer and Mueller, 2011),

describes the origins and goals for the project.

Arelle’s model integrates the objects of XBRL instances, inline instances, XBRL Discoverable Taxonomy

Sets (DTSes), XBRL formula linkbases, XBRL versioning metamodels (models of DTS comparisons), and

testcases. The integration of modeling of testcases provides a practical benefit in that its concrete

realization allows for continual verification of tool performance as it is extended and adapted by its

users.

A goal of the model was to form the basis of a minimalist initial implementation, as a counter-response

to experience with other APIs that are large, hard to learn, and not directly supportive of the XBRL

extension modules. In this case, the realization of the model, at the current stage of progress, is an API

that is compact and implemented with a minimum of coding.

A goal of publishing the modeling is to further enhance providing a platform for XBRL training.

An MVC (model-view-controller) architecture has been selected. A top level UML view is shown in

Figure 1.

+addToLog()

+showStatus()

«signal»-logger()

-isMac, isMSW

-config

Cntlr

CntlrCmdLine CntlrWebMainCntlrWinMain

+load()

+create()

+validate()

+close()

ModelManager

-modelManager 1

-cntlr

1

+normalizeUrl()

+getfilename()

-cacheDir

-workOffline

-proxyhandler

WebCache

-cntlr

1

-webCache1

«call»
«call»

+load()

+create()

+close()

+closeViews()

+viewModelObject()

-url

-filepath

ModelXbrl

-modelManager1

-loadedModelXbrls*

+load()

+create()

+close()

-type

-url

-filepath

-xmlDocument

-inDTS

ModelDocument

View-modelXbrl

1

-views

*

-modelXbrl1

-modelDocument

1

1

-urlDocuments

*

«call»

«call»

Figure 1. Model View Controller diagram

ModelXbrl represents the objects of XBRL: instances, inline-instances, DTS schemas and linkbases,

individual test cases, test suites, formula, and versioning reports. The model has a modelManager,

which manages the set of models loaded at a time.

The controller (Cntlr) represents interaction with external users and external programmatic control,

such as by specialized controllers for GUI (CntlrWinMain), web (CntlrWebMain, to be developed), and

command line (CntlrCmdLine). The command line controller is a pattern for integration to custom

projects for macroscopic XBRL operations (such as load/validate/export CSV, etc).

A view represents pre-defined API interactions with the model, to present object views for GUI, textual

use (e.g., CSV files), and future web interaction.

A number of utility functions are included to make the code easier to read and more compact. These

include XML utilities, URI utilities, and a customized Python web cache.

Validation operations are factored out to separate classes, as they are quite large to include with the

objects that they validate for. Validation operations have been integrated to prevent redundant passes

through object models.

Top level operation

A controller object is instantiated, CntlrWinMain for the GUI and CntlrCmdLine for command line batch

operation. The controller superclass initialization sets up specifics such as directory paths, for its

environment (Mac, Windows, or Unix), sets up a web file cache, and retrieves a configuration dictionary

of prior user choices (such as window arrangement, validation choices, and proxy settings).

The controller most likely will load an XBRL related object, such as an XBRL instance, taxonomy, testcase

file, versioning report, or RSS feed, by requesting the model manager to load and return a reference to

its modelXbrl object. The modelXbrl object loads the entry modelDocument object(s), which in turn

load documents they discover (for the case of instance, taxonomies, and versioning reports), but defer

loading instances for test case and RSS feeds. The model manager may be requested to validate the

modelXbrl object, or views may be requested as below. (Validating a testcase or RSS feed will validate

the test case variations or RSS feed items, one by one.)

Examples are provided under the discussions of the controller, below.

Top level APIs are found in the package ModuleManager, that coordinates the Controller and Model

objects:

ModelManager.py:
ModelManager provides an interface between modelXbrl’s and the controller. Model manager
is a singleton object, one is created in initialization of a controller.

 Methods

load(file, nextAction=None) Returns a modelXbrl with a loaded an instance, inline XBRL, schema, or
linkbase, and discovers the DTS, or loads a versioning report and its
from/to DTSes, testcase index file, testcase variations file, or functions
registry file.

 file may be a FileSource object or string file name.

 nextAction is a status line text string, if any, to show on
completion.

The modelXbrl that is loaded is ‘stacked’ so that any modelXbrl
operations such as validate, and close, operate on the most recently
loaded modelXbrl, and compareDTSes operates on the two most
recently loaded modelXbrl’s.

validate() Validates the most recently loaded modelXbrl (according to validation
properties)

compareDTSes(versReportFile) Compare two most recently loaded DTSes, saving versioning report in
to the file name provided.

close() Closes the most recently loaded modelXbrl

 Properties

validateDisclosureSystem True if disclosure system is to be validated (e.g., EFM)

disclosureSystem Disclosure system object. To select the disclosure system, e.g., “gfm”,
moduleManager.disclosureSystem.select(“gfm”).

validateCalcLB True for calculation linkbase validation.

validateInferDecimals True for calculation linkbase validation to infer decimals (instead of
precision)

validateUTR True for validation of unit type registry

defaultLang The default language code for labels selection and views (e.g. “en-US”),
set from the operating system defaults on startup.

Model

The intent of the model is to provide independence of the eventual serialization of XBRL, which for now
is XML. The XSB Strategic Initiatives project has a task to develop an SQL model, which may for a basis
for an alternate serialization to be consumed by Arelle.

From the top down, referring to Figure 1, there is the necessity to process multiple instances (DTSes) of
XBRL concurrently. A ModelManager coordinates them for the Controller, and is the interface to utility
functions (such as the Python web cache), and application specific formalisms (such as the SEC
restrictions on referencable base taxonomies).

Each loaded instance, DTS, testcase, testsuite, versioning report, or RSS feed, is represented by an
instance of a ModelXbrl object. The ModelXbrl object has a collection of ModelDocument objects, each
representing an XML document (for now, with SQL whenever its time comes). One of the
modelDocuments of the ModelXbrl is the entry point (of discovery or of the test suite).

Each modelDocument represents a set of modelObjects, which are specialized according to the type of
document. There is also one specialization of modelDocument, which is a modelVersReport, as the
versioning report has different objects and methods than from any other XBRL modelDocument.

The next sections will examine the model abstracted at the class and relationships level (omitting
operations), for DTS models, instance models, and DTS formula models.

Model Objects

Figure 2 shows the Model Objects, which represent the loaded and discovered XML document structure.

+load()

+create()

+close()

+closeViews()

+matchContext()

+matchUnit()

+matchFact()

+viewModelObject()

+info()

+warning()

+error()

+exception()

-url

-filepath

ModelXbrl

+load()

+create()

+close()

+schemaDiscover()

+linkbaseDiscover()

+instanceDiscover()

+inlineXbrlDiscover()

+testcaseIndexDiscover()

+testcaseDiscover()

+registryDiscover()

-type

-url

-filepath

-xmlDocument

-targetNamespace

-inDTS

ModelDocument

+resolveUri()

+genLabel()

+propertyView()

-localName

-prefixedName

-namespaceURI

-elementQname

-parentQname

ModelObject

ModelComment

ModelAttribute

-modelXbrl1

-modelDocument

1

1

-urlDocuments

*

-modelXbrl1

-qnameObjects

*

-modelDocument1

-idObjects

*

-element1

-attributes*

1

*

Types of ModelDocument:

instance, inline XBRL,

schema, linkbase,

testcase index,

variation,

versioning report,

registry, registry entry,

RSS feed,

Misc. XML

ModelVersionReport

ModelRssObject

ModelDtsObjects...

ModeInstanceObjects...

1

-referencesDocument

*

ModelTestcaseObject

ModeVersioningObject

ModelRssItem

Figure 2. Model Objects

The modelXbrl class can instantiate a modelXbrl and its documents either by loading (and discovery) or
by creating (such as an empty instance document, to receive new XBRL formula output facts or a new
instance document). It can notify all active views to render or select a specific object for view. It can

match specific criteria to find a context, unit, or fact in an instance (such as to match a generated
instance document against an expected testcase result intstance).

The modelDocument performs discovery and initialization when loading documents. For instances,
schema and linkbase references are resolved, as well as non-DTS schema locations needed to ensure
PSVI-validated XML elements in the instance document (for formula processing). For DTSes, schema
includes and imports are resolved, linkbase references discovered, and concepts made accessible by
qname by the modelXbrl and ID at the modelDocument scope. Testcase documents (and their indexing
files) are loaded as modelDocument objects.

Specialized modelDocuments are the versioning report, which must discover from and to DTSes, and an
RSS feed, which has a unique XML structure.

ModelObjects, representing the XML elements within a document, are implemented as custom lxml
proxy objects. Each modelDocument has a parser with the parser objects in ModelObjectFactory.py, to
determine the type of model object to correspond to a proxied lxml XML element. Both static
assignment of class, by namespace and local name, and dynamic assignment, by dynamic resolution of
element namespace and local name according to the dynamically loaded schemas, are used in the
ModelObjectFactory.

ModelObjects are grouped into Python modules to ensure minimal inter-package references (which
causes a performance impact). ModelDtsObjects collects DTS objects (schema and linkbase),
ModelInstanceObjects collects instance objects (facts, contexts, dimensions, and units),
ModelTestcaseObject collects testcase and variation objects, ModelVersioningObject has specialized
objects representing versioning report contents, and ModelRssItem represents the item objects in an
RSS feed.

Validation operations are separated from the objects that are validated, because the operations are
complex, interwoven, and factored quite differently than the objects being validated. There are these
validation modules at present: validation infrastructure, test suite and submission control, versioning
report validation, XBRL base spec, dimensions, and formula linkbase validation, Edgar and Global Filer
Manual validation.

ModelXbrl.py:
ModelXbrl objects represent loaded instances and inline XBRL instances and their DTSes, DTSes
(without instances), versioning reports, testcase indexes, testcase variation documents, and
other document-centric loadable objects.

 Static methods

load(modelManager, url,
nextaction=None,
base=None,
useFileSource=None)

Returns a new modelXbrl, performing DTS discovery for instance, inline
XBRL, schema, linkbase, and versioning report entry urls.

 url may be a filename or FileSource object

 nextaction is a string to use as status line prompt on
conclusion of loading and discovery

 base is the base URL if any (such as a versioning report’s URL
when loading to/from DTS modelXbrl).

 useFileSource is for internal use (when an entry point is in a
FileSource archive and discovered files expected to also be in
the entry point’s archive.

create(modelManager,
newDocumentType=None,
url=None,
schemaRefs=None,
createModelDocument=Tr
ue, isEntry=False)

Returns a new modelXbrl, with entry point XML document pre-
populated with header and top level elements. For example, can be
used by formula processing to create an instance document that is
being generated internally and may (or not) be actually saved to a file
later.

 newDocumentType is a value of ModelDocument.type (e.g.,
INSTANCE)

 url is a real or fake URL (so the document can have a base URL
if needed).

 schemaRefs is a list of URLs when creating an empty

INSTANCE, to use to discover (load) the needed DTS
modelDocument objects.

 isEntry is True when creating an entry (e.g., instance)

 Methods

close() Closes any views, formula output instances, modelDocument(s), and
dereferences all memory used

closeViews() Close views associated with this modelXbrl

reload(nextaction,
reloadCache=False)

Reload a modelXbrl’s source files, preserving any open views (that get
reloaded), nextaction as per load() above, reloadCache True specifies
that any cached files (from web) will be reloaded (if working online)

relationshipSet(arcrole,
linkrole=None,
linkqname=None,
arcqname=None,
includeProhibits=False)

Returns a relationship set matching arcrole, linkrole (wild if None),
linkqname (wild if None), arcqname (wild if None), or special collective
arcroles ‘XBRL-dimensions’, ‘XBRL-formula’, and ‘Table-rendering’. If
relationship set was previously resolved, returns from a cache.

matchSubstitutionGroup(
elementQname,
subsGrpMatchTable)

Resolve a subsitutionGroup for the elementQname from the match
table , (substitutee, returnedObject), …- , used to determine xml proxy
object class for xml elements and substitution group membership

isInSubstitutionGroup(
elementQname,
substitutionQnames)

True if element is in substitution group for qnames (used by formula
and generics validation)

matchContext(scheme,
identifier, periodType,
start, end, dims, segOCCs,
scenOCCs)

Finds matching context, by aspects, as in formula usage, if any

matchUnit(multiplyBy,
divideBy)

Finds matching unit, by aspects, as in formula usage, if any

matchFact(otherFact) Finds matching fact, by context qname, v-equality, lang, decimals, and
precision, if any, used in verifying an formula standard output instance
fact has a match in a testcase expected results file.

modelObject(objectId) Finds a model object by an ordinal ID which may be buried in a tkinter
view id string (e.g., ‘somedesignation_ordinalnumber’).

viewModelObject(objectId) Finds model object, if any, and synchronizes any views displaying it to
bring the model object into scrollable view region and highlight it

info(code, message, named
arguments)

Logs a message as info, by code, logging-system message text (using
%(name)s named arguments to compose string by locale language),
resolving model object references (such as qname), to prevent non-
dereferencable memory usage. Supports logging system parameters,
and special parameters modelObject, modelXbrl, or modelDocument,
to provide trace information to the file, source line, and href (XPath
element scheme pointer). Supports the logging exc_info argument.

warning(code, message,
named arguments)

“ but as warning

error(code, message, named
arguments)

“ but as error, and also saves error code and assertion results (in
‘errors’ list) for validation

exception(code, message,
named arguments)

“ but as exception

 Properties

urlDocs Dict, by URL, of loaded modelDocuments

errors List of error codes and assertion results, which were sent to logger, via
error() method above, used for validation and post-processing

logErrorCount,
logWarningCoutn,
logInfoCount

Counts of respective error levels processed by modelXbrl logger

arcroleTypes Dict by arcrole of defining modelObjects

roleTypes Dict by role of defining modelObjects

qnameConcepts Dict by qname (ModelValue.QName) of all top level schema elements,
regardless of whether discovered or not discoverable (not in DTS)

qnameAttributes Dict by qname of all top level schema attributes

qnameAttributeGroups Dict by qname of all top level schema attribute groups

qnameTypes Dict by qname of all top level and anonymous types

baseSets Dict of base sets by (arcrole, linkrole, arc qname, link qname), (arcrole,
linkrole, *, *), (arcrole, *, *, *), and in addition, collectively for
dimensions, formula, and rendering, as arcroles ‘XBRL-dimensions’,
‘XBRL-formula’, and ‘Table-rendering’.

relationshipSets Dict of effective relationship sets indexed same as baseSets (including
collective indices), but lazily resolved when requested.

qnameDimensionDefaults Dict of dimension defaults by qname of dimension

facts List of top level facts (not nested in tuples), document order

factsInInstance List of all facts in instance (including nested in tuples), document order

contexts Dict of contexts by id

units Dict of units by id

modelObjects Model objects in loaded order, allowing object access by ordinal index
(for situations, such as tkinter, where a reference to an object would
create a memory freeing difficulty).

qnameParameters Dict of formula parameters by their qname

modelVariableSets Set of variableSets in formula linkbases

modelCustomFunction
Signatures

Dict of custom function signatures by qname

modelCustomFunction
Implementations

Dict of custom function implementations by qname

views List of view objects

langs Set of langs in use by modelXbrl

labelRoles Set of label roles in use by modelXbrl’s linkbases

hasXDT True if dimensions discovered

hasTableRendering True if table rendering discovered

hasFormulae True if formulae discovered

formulaOutputInstance Standard output instance if formulae produce one.

Log Logger for modelXbrl

ModelDocument.py:
ModelDocument objects represent each loaded document from an XML source.

 Static methods

load(modelXbrl, uri,
base=None,
referringElement=None,
isEntry=False,
isDiscovered=False,
isIncluded=None,
namespace=None,
reloadCache=False)

Returns a new modelDocument, performing DTS discovery for
instance, inline XBRL, schema, linkbase, and versioning report entry
urls.

 uri may be a filename or FileSource object

 referringElement is the source element causing discovery or
loading of this document, such as an import or xlink:href

 isEntry is True for an entry document

 isDiscovered is True if this document is discovered by XBRL
rules, otherwise False (such as when schemaLocation and
xmlns were the cause of loading the schema)

 isIncluced is True if this document is the target of an xs:include

 namespace is the schema namespace of this document, if
known and applicable

 reloadCache is True if desired to reload the web cache for any
web-referenced files.

create(modelXbrl, type, uri,
schemaRefs=None,
isEntry=False)

Returns a new modelDocument, created from scratch, with any
necessary header elements (such as the schema, instance, or RSS feed
top level elements)

 type is the type value (see below)

 schemaRefs is a list of URLs when creating an empty
INSTANCE, to use to discover (load) the needed DTS
modelDocument objects.

 isEntry is True when creating an entry (e.g., instance)

 Type (subclass)

SCHEMA, LINKBASE,
INSTANCE, INLINEXBRL,
DTSENTRIES,
VERSIONINGREPORT,
TESTCASESINDEX,
TESTCASE, REGISTRY,
REGISTRYTESTCASE,
RSSFEED

Enumerated type representing modelDocument type

 Methods (of modelDocument objects)

objectId(refId=””) Returns a string surrogate representing the object index of the model
document, prepended by the refId string.

relativeUri(uri) Returns a uri relative, if possible, to document base

close() Closes modelDocument, including referenced documents, releases
lxml parser internal objects and frees lxml memory.

gettype() String value of enumerated type name

schemaDiscover() Initiates XBRL 2.1 discovery within schema documents

baseForElement(element) Determines xml base of element, from any xml:base on element or
ancestors, and document base

linkbasesDiscover() Initiates discovery linkbases (e.g., within schema file)

linkbaseDiscover() Initiates discovery of a linkbase (in schema or linkbase file)

discoverHref(element,
nonDTS=False)

Processes a href, loading modelDocument if not already loaded, and if
nonDTS is False, causing XBRL 2.1 discovery of document. If nonDTS is
False and document is already loaded but not previously discovered
(its inDTS is False), then its 2.1 discovery is performed.

instanceDiscover() Initiates discovery of an instance.

inlineXbrlDiscover() Initiates discovery of an inline XBRL instance.

testcaseIndexDiscover() Initiates discovery of a testcase index document (which discovers
referenced testcase variations)

testcaseDiscover() Initiates discovery of a testcase variations document

registryDiscover() Initiates discovery of a registry (such as formula registry, and its
referenced testcase variations, in a different format from testcases).

 Properties

modelDocument Self (provided for consistency with modelObjects)

modelXbrl The owning modelXbrl

type The enumerated document type

uri Uri as discovered

filepath File path as loaded (e.g., from web cache on local drive)

basename Python basename (last segment of file path)

xmlDocument The lxml tree model of xml proxies

targetNamespace Target namespace (if a schema)

objectIndex Position in lxml objects table, for use as a surrogate

referencesDocument Dict of referenced documents, key is the modelDocument, value is why

loaded (import, include, href)

idObjects Dict by id of modelObjects in document

modelObjects List of modelObjects discovered in document in document order

hrefObjects List of (modelObject, modelDocument, id) for each xlink:href

schemaLocationElements Set of modelObject elements that have xsi:schemaLocations

referencedNamespaces Set of referenced namespaces (by import, discovery, etc)

inDTS Qualifies as a discovered schema per XBRL 2.1

ModelVersReport.py:
ModelVersReport is a specialization of ModelDocument for Versioning Reports.

 Static methods

create(modelXbrlFromDTS,
modelXbrlToDTS)

Returns a new modelXbrl representing a Version Report object, by
creation of its modelXbrl, its ModelVersReport (modelDocument), and
diffing the from and to DTSes

 modelXbrlFromDTS is the modelXbrl of fromDTS

 modelXbrlToDTS is the modelXbrl of toDTS

 Methods

close() Closes any views, formula output instances, modelDocument(s), and
dereferences all memory used

versioningReportDiscover() Initiates discovery of versioning report

diffDTSes(versReportFile,
fromDTS, toDTS,
assignment="technical",
schemaDir=None)

Initiates diffing of fromDTS and toDTS, populating the
ModelVersReport object, and saving the versioning report file).

 versReporFile is the file name to save the versioning report

 fromDTS, toDTS are the modelXbrl’s to be diffed

 assignment is “technical”, “business”, etc. for the assignment
clause

 schemaDir is a directory for determination of relative path for
versioning xsd files (versioning-base.xsd, etc).

 Properties

fromDTS From DTS (modelXbrl object)

toDTS To DTS (modelXbrl object)

assignments Dict by id of ModelAssignment objects

actions Dict by id of ModelAction objects

namespaceRenameFrom Dict by fromURI of ModelNamespaceRename objects

namespaceRenameTo Dict by toURI of ModelNamespaceRename objects

roleChanges Dict by uri of ModelRoleChange objects

conceptBasicChanges List of ModelConceptBasicChange objects

conceptExtendedChanges List of ModelConceptExtendedChange objects

equivalentConcepts Dict by qname of equivalent qname

relatedConcepts DefaultDict by qname of list of related concept qnames

relationshipSetChanges List of ModelRelationshipSet objects

instanceAspectChanges List of ModelInstanceAspectChange objects

typedDomainsCorrespond Dict by (fromDimConcept,toDimConcept) of bool that is True if
corresponding

ModelRssObject.py:
ModelRssObject is a specialization of ModelDocument for RSS Feeds.

 Methods

rssFeedDiscover() Initiates discovery of RSS feed

ModelObject.py:
ModelObject is a custom lxml proxy object, implemented as a specialization of
etree.ElementBase, and used as the superclass of discovered and created objects in XML-based
objects in Arelle. ModelObject is also used as a phantom proxy object, for non-XML objects that
are resolved from modelDocument objects, such as the ModelRelationship object.
ModelObjects persistent with their owning ModelDocument, due to reference by modelObject
list in modelDocument object.
ModelConcept and ModelProcessingInstruction are custom proxy objects for
etree.CommentBase and PIBase.
ModelAttribute stores PSVI attribute values for each object.

 ModelObject Methods (in addition to lxml ElementBase methods, such as getparent())

prefixedNameQname(
prefixedName)

Returns ModelValue.QName of prefixedName using element and
ancestors xmlns.

resolveUri(hrefObject=None,
uri=None,
dtsModelXbrl=None)

Returns modelObject within modelDocment that resolves a URI based
on arguments:

 hrefObject (hrefElement, modelDocument, id), or

 uri (element scheme pointer), and

 dtsModelXbrl (default is the element’s own modelXbrl)

 ModelObject Properties (in addition to lxml CommentBase properties, such as .text)

modelDocument Owning ModelDocument object

modelXbrl modelDocument’s owning ModelXbrl object

objectId(refId=””) Returns a string surrogate representing the object index of the model
document, prepended by the refId string.

localName W3C DOM localName

prefixedName Prefix by ancestor xmlns and localName of element

namespaceURI W3C DOM namespaceURI (overridden for schema elements)

elementNamespaceURI W3C DOM namespaceURI (not overridden by subclasses)

qname ModelValue.QName of element (overridden for schema elements)

elementQname ModelValue.QName of element (not overridden by subclasses)

parentQname ModelValue.QName of parent element

id Id attribute or None

elementAttributesTuple Python tuple of (tag, value) of specified attributes of element, where
tag is in Clark notation

elementAttributesStr String of tag=value*,tag=value…+ of specified attributes of element

xValid XmlValidation.py validation state enumeration

xValue PSVI value (for formula processing)

sValue s-equals value (for s-equality)

xAttributes Dict by attrTag of ModelAttribute objects (see below) of specified and
default attributes of this element.

 ModelComment (custom etree.CommentBase) Properties

modelDocument Owning ModelDocument object

 ModelProcessingInstruction Properties (in addition to lxml PIBase properties)

modelDocument Owning ModelDocument object

 ModelAttribute (slot-based, like java struct, to store PSVI attribute values on ModelObject)

modelElement Owning ModelObject element lxml proxy object

attrTag Attribute tag (Clark notation)

xValid XmlValidation.py validation state enumeration

xValue PSVI value (for formula processing)

sValue s-equals value (for s-equality)

Model DTS Objects

Figure 3 shows the Model DTS Objects, which represent the loaded and discovered XML document
structure except for relationship sets, which are constructed on demand (by validation or view
operations).

ModelObject

ModelRoleTypeModelSchemaObject

ModelConcept

ModelAttributeGroup

ModelAttribute

ModelType

ModelLink

ModelResource

ModelLocator

ModelFormulaObject

ModelRelationship

ModelRelationshipSet

ModelXbrl

*

-type*
1

-from

*
1

-to

*

-linkrole

1

*

-arcrole

1

*

-href

0..1

1

1

1

1 *

1

*

1

*

*

*

1

*

1

*

1

*

*

*

*

-substitution *

*

-derived_from *

ModelDocument

1

*

1
*

1 1

1

-attributes

*

Figure 3. Model DTS Objects

XBRL processing requires element-level access to schema elements. Traditional XML processors, such as
lxml (based on libxml), and Xerces (not available in the Python environment), provide opaque schema
models that cannot be used by an XML processor. Arelle implements its own elment, attribute, and type
processing, in order to provide PSVI-validated element and attribute contents, and in order to access
XBRL features that would otherwise be inaccessible in the XML library opaque schema models.

ModelConcept represents a schema element, regardless whether an XBRL item or tuple, or non-concept
schema element. The common XBRL and schema element attributes are provided by Python properties,
cached when needed for efficiency, somewhat isolating from the XML level implementation.

There is thought that a future SQL-based implementation may be able to utilize ModelObject proxy
objects to interface to SQL-obtained data.

ModelType represents an anonymous or explicit element type. It includes methods that determine the
base XBRL type (such as monetaryItemType), the base XML type (such as decimal), substitution group
chains, facits, and attributes.

ModelAttributeGroup and ModelAttribute provide sufficient mechanism to identify element attributes,
their types, and their default or fixed values.

There is also an inherently different model, modelRelationshipSet, which represents an individual base
or dimensional-relationship set, or a collection of them (such as labels independent of extended link
role), based on the semantics of XLink arcs.

PSVI-validated instance data are determined during loading for instance documents, and on demand for

any other objects (such as when formula operations may access linkbase contents and need PSVI-

validated contents of some linkbase elements). These validated items are added to the ModelObject

lxml custom proxy objects.

Linkbase objects include modelLink, representing extended link objects, modelResource, representing

resource objects, and modelRelationship, which is not a lxml proxy object, but represents a resolved and

effective arc in a relationship set.

ModelRelationshipSets are populated on demand according to specific or general characteristics. A

relationship set can be a fully-specified base set, including arcrole, linkrole, link element qname, and arc

element qname. However by not specifying linkrole, link, or arc, a composite relationship set can be

produced for an arcrole accumulating relationships across all extended link linkroles that have

contributing arcs, which may be needed in building indexing or graphical topology top levels.

Relationship sets for dimensional arcroles will honor and traverse targetrole attributes across linkroles.

There is a pseudo-arcrole for dimensions that allows accumulating all dimensional relationships

regardless of arcrole, which is useful for constructing certain graphic tree views.

Relationship sets for table linkbases likewise have a pseudo-arcrole to accumulate all table relationships

regardless of arcrole, for the same purpose.

Relationship sets can identify ineffective arcroles, which is a requirement for SEC and GFM validation.

ModelDtsObject.py:
This module contains DTS-specialized ModelObject classes: ModelRoleType (role and arcrole
types), ModelSchemaObject (parent class for top-level named schema element, attribute,
attribute groups, etc), ModelConcept (xs:elements that may be concepts, typed dimension
elements, or just plain XML definitions), ModelAttribute (xs:attribute), ModelAttributeGroup,
ModelType (both top level named and anonymous simple and complex types),
ModelEnumeration, ModelLink (xlink link elements), ModelResource (xlink resource elements),
ModelLocator (subclass of ModelResource for xlink locators), and ModelRelationship (not an
lxml proxy object, but a resolved relationship that reflects an effective arc between one source
and one target).

Each of these classes inherits ModelObject and lxml etree.ElementBase methods and properties.

 ModelRoleType Properties

isArcrole True for arcroleType, False for roleType

roleURI Value of roleURI attribute

arcroleURI Value of arcroleURI attribute

cyclesAllowed Value of cyclesAllowed attribute

Definition Text of definition element, trimmed of whitespace

definitionNotStripped Definition, but not trimmed of whitespace

usedOns Set of ModelValue.QNames of used on element content.

 ModelSchemaObject Properties (superclass for xs:element, xs:attribute, xs:*Types)

Name Value of name attribute

Qname ModelValue.QName formed of name and the schema
targetNamespace (overrides ModelObject qname)

 ModelConcept Properties

abstract Value of abstract attribute

isAbstract True if abstract equals True

periodType Value of periodType attribute

balance Value of balance attribute

typeQname ModelValue.QName of named type, if any, or anonymous type
(element name plus anonymous type suffix), or substitution group’s
type.

niceType Provides a type name suited for user interfaces: hypercubes as Table,
dimensions as Axis, types ending in ItemType have ItemType removed
and first letter capitalized (e.g., stringItemType as String). Otherwise
returns the type’s localName portion.

baseXsdType Attempts to return the base xsd type localName that this concept’s
type is derived from. If not determinable anyType is returned. E.g., for
monetaryItemType, decimal is returned.

facets Returns self.type.facets or None (if type indeterminate)

baseXbrliType Attempts to return the base xbrli type localName that this concept’s
type is derived from, or None if not determinable.

isNumeric True for a numeric xsd base type (not including xbrl fractions)

isFraction True if the baseXbrliType is fractionItemType

isMonetary True if the baseXbrliType is monetaryItemType

isShares True if the baseXbrliType is sharesItemType

isTextBlock Element’s type.isTextBlock

type Element’s modelType object (if any)

substitutionGroup modelConcept object for substitution group (or None)

substitutionGroupQnames Ordered list of ModelValue.QNames of substitution groups
(recursively)

subGroupHeadQname Qname of the head of the substitution groups

isQualifiedForm True if element has form attribute qualified or its document default

nillable Contents of the nillable attribute or its default

isNillable True if nillable

block Contents of the block attribute

default Contents of the default attribute

fixed Contents of the fixed attribute or None

final Contents of the final attribute or None

isRoot True if element definition is at root (not nested)

isItem True if xbrli:item is at head of substitution group (but False if element
is xbrli:item itself)

isTuple “ if xbrli:tuple “

isLinkPart “ if link:part “

isPrimaryItem True for an item that is not a hypercube or dimension

isDomainMember “

isHypercubeItem True if substitutes for hypercubeItem

isDimensionItem “ dimensionItem

isTypedDimension “ dimensionItem with typedDomainRef specified

isExplicitDimension “ dimensionItem without typedDomainRef

typedDomainElement modelConcept object of the typedDomainRef or None

 ModelConcept Methods

instanceOfType(typeQname) Returns True if element’s type is derived from typeQname.

label(preferredLabel=None,
fallbackToQname=True,
lang=None, strip=False)

Returns effective label for concept, using preferredLabel role (or
standard label if None), absent label falls back to element qname
(prefixed name) if specified, lang falls back to tool-config language if
none, leading/trailing whitespace stripped (trimmed) if specified. Does
not look for generic labels (use superclass genLabel for generic label).

relationshipToResource(
resourceObject, arcrole)

For specified object and resource (all link roles), returns first
modelRelationshipObject that relates from this element to specified
resourceObject.

substitutesForQname(
subsQname)

True if element substitutes for specified qname

 ModelAttribute Properties

typeQname QName of type of attribute

type Attribute’s modelType object (if any)

baseXsdType Attempts to return the base xsd type localName that this attribute’s
type is derived from. If not determinable anyType is returned.

facets Returns self.type.facets or None (if type indeterminate)

isNumeric True for a numeric xsd base type (not including xbrl fractions)

isQualifiedForm True if attribute has form attribute qualified or its document default

isRequired True if use is required

default Contents of the default attribute

fixed Contents of the fixed attribute or None

dereference If element is a ref (instead of name), provides referenced
modelAttribute object, else self

 ModelAttribute Properties

isQualifiedForm True (for compatibility with other schema objects)

Attributes Dict of modelAttribute objects by qname

Dereference If element is a ref (instead of name), provides referenced
modelAttributeGroup object, else self

 ModelType Properties

name The type’s name (localName), if specified, otherwise the nearest
ancestor element with a name + @anonymousType

isQualifiedForm True (for compatibility with other schema objects)

qnameDerivedFrom ModelValue.QName of the type that this type is derived from

typeDerivedFrom ModelType object of the type that this type is derived from

baseXsdType The xsd type localName that this type is derived from or: noContent for
an element that may not have text nodes, anyType for an element that
may have text nodes but their type is not specified, or one of several
union types for schema validation purposes: XBRLI_DATEUNION,
XBRLI_DECIMALSUNION, XBRLI_PRECISIONUNION,
XBRLI_NONZERODECIMAL.

baseXbrliType The localName of the parent type in the xbrli namespace, if any,
otherwise the localName of the parent in the xsd namespace.

isTextBlock True if type is, or is derived from, us-types:textBlockItemType or dtr-
types:escapedItemType

isDomainItemType True if type is, or is derived from, domainItemType in either a us-types
or a dtr-types namespace.

elements List of element QNames that are descendants (content elements)

facets Dict of facets by their facet name, all are strings except enumeration,
which is a set of enumeration values.

requiredAttributeQnames Set of attribute QNames which have use=required.

defaultAttributeQnames Set of attribute QNames which have a default specified

 ModelType Methods

isDerivedFrom(typeqname) True if type is derived from type specified by QName

attributes Dict of ModelAttribute attribute declarations by attribute QName

fixedOrDefaultAttrValue(
attrName)

Descendant attribute declaration value if fixed or default, argument is
attribute name (string), e.g., “precision”.

 ModelEnumeration Properties (of an xsd:enumeration declaration element)

value Value attribute

 ModelLink Properties (of an link:extended element)

typeQname QName of type of attribute

labeledResources Dict of child labeled xlink:resources by their xlink:label

 ModelResource Properties (of an xlink:resource element), superclass of ModelLocator and formula
resource objects

role xlink:role attribute value or None if absent

xlinkLabel xlink:label “

xmlLang xml:lang “

viewText Text of contained (inner) text nodes except for any whose localName
starts with URI, for label and reference parts displaying purposes.

dereference Self (provided for compatibility with ModelLocator (loc) objects

 ModelLocator Properties (of an xlink:locator element) Subclass of ModelResource

dereference ModelObject that xlink:href resolves to.

 ModelRelationship Properties (a ModelObject that does not proxy an lxml object)

arcElement ModelObject arc element of the effective relationship

fromModelObject ModelObject of the xlink:from (dereferenced if via xlink:locator)

toModelObject “ xlink:to “

get(), localName,
namespaceURI,
prefixedName, sourceline,
tag, elementQname,
qname, itersiblings()

Properties (and methods) proxies for the arc element of the effective
relationship so that the non-proxy ModelRelationship can be used in
terms as if it were the arc’s ModelObject.

fromLabel Value of xlink:from attribute

toLabel “ xlink:to “

arcrole “ xlink:arcrole “

order Float value of order attribute, or 1.0 if absent

priority Int value of priority attribute or 0 if absent

weight Float value of weight or None if absent

use Value of use attribute

isProhibited True if prohibited

preferredLabel Value of preferredLabel attribute

variableName Value (as string) of formula relationship name attribute

variableQname Value as QName “, considering no prefix does not take xmlns default.

linkQname QName of containing extended link element

contextElement Value of xbrldt:contextElement attribute if present, else None

targetRole Value of xbrldt:targetRole attribute if present, else None

Usable Value of xbrldt:usable attribute if present, else true

isUsable True for xbrldt:usable attribute value true or absent

closed Value of xbrldt:closed attribute if present, else false

isClosed True if closed=true

isComplemented True for formula arc specifying complemented

isCovered True for formula arc specifying covered

tableAxis Table linkbase axis type

 ModelRelationship Methods

isIdenticalTo(
otherRelationship)

True if modelRelationships are identical (same arc element, resolves to
same from and to elements)

Model Instance Objects

Model Instance Objects are shown in figure 4.

ModelObject

ModelSchemaObject

ModelConcept

ModelXbrl

-concept

0..1 1

*

*

ModelDocument

1

*

1
*

ModelFact

ModelInlineFact

1

-tupleFacts

*

ModelContext ModelUnit

*

-context1

*

-unit1

ModelDimensionValue

1

-seg*

1

-scen*

Figure 4. Model Instance Objects

Model facts represent XBRL instance facts (that are elements in the instance document). Model inline

facts represent facts in a source xhtml document, but may accumulate text across multiple mixed-

content elements in the instance document, according to the rendering transform in effect. All inline

facts are lxml proxy objects for the inline fact and have a cached value representing the transformed

value content. PSVI values for the inline fact’s value and attributes are on the model inline fact object

(not necessarily the element that held the mixed-content text).

Model context objects are the lxml proxy object of the context XML element, but cache and interface

context semantics that may either be internal to the context, or inferred from the DTS (such as default

dimension values). PSVI values for elements internal to the context, including segment and scenario

elements, are on the individual model object lxml custom proxy elements. For fast comparison of

dimensions and segment/scenario, hash values are retained for each comparable item.

Model dimension objects not only represent proxy objects for the XML elements, but have resolved

model DTS concepts of the dimension and member, and access to the typed member contents.

Model unit objects represent algebraically usable set objects for the numerator and denominator

measure sets.

ModelInstanceObject.py:
This module contains Instance-specialized ModelObject classes: ModelFact (xbrli:item and
xbrli:tuple elements of an instance document), ModelInlineFact specializes ModelFact when in
an inline XBRL document, ModelContext (xblrli:context element), ModelDimensionValue
(xbrldi:explicitMember and xbrli:typedMember elements), and ModelUnit (xbrli:unit elements).

Each of these classes inherits ModelObject and lxml etree.ElementBase methods and properties.

 ModelFact Properties

concept ModelConcept object of the fact.

contextID Value of contextRef attribute, None if absent

context ModelContext object of the fact, None if absent.

unitID Value of unitRef attribute, None if absent

unit ModelUnit object of the fact, None if absent

conceptContextUnitLangHash Hash value of fact’s concept QName, dimensions-aware context hash,
unit hash, and xml:lang hash, useful for fast comparison of facts for
EFM 6.5.12

isItem concept.isItem

isTuple concept.isTuple

isNumeric concept.isNumeric (note this is false for fractions)

isFraction concept.isFraction

parentElement ModelObject of parent element (tuple or xbrli:xbrl)

ancestorQnames Set of QNames of ancestor elements (tuple and xbrli:xbrl)

decimals Value of decimals attribute (as string)

precision Value of precision attribute (as string)

xmlLang Value of xml:lang attribute

xsiNil Value of xsi:nil attribute if present, else false

isNil True if xsiNil is true

value Text value of fact or default or fixed if any, otherwise None

fractionValue (text value of numerator, text value of denominator)

effectiveValue Effective value for views, (nil) if isNil, None if no value, locale-
formatted decimal value (if decimals specified) , otherwise string value

vEqValue v-equal value, float if numeric, otherwise string value

 ModelFact Methods

isVEqualTo(other) v-equality of two facts

 ModelInlineFact Properties specializes ModelFact for inline XBRL documents (as xhtml elements)

qname QName of concept from the name attribute, overrides and
corresponds to the qname property of a ModelFact (inherited from
ModelObject)

sign Value of sign attribute

tupleID Value of tupleID attribute

tupleRef Value of tupleRef attribute

footnoteRefs Value of footnoteRefs attribute

format Value of format attribute

scale Value of scale attribute

value Overrides and corresponds to value property of ModelFact, for
relevant inner text nodes aggregated and transformed as needed.

 ModelContext Properties

isStartEndPeriod True for startDate/endDate period

isInstantPeriod True for instant period

isForeverPeriod True for forever period

startDatetime Datetime value of start

endDatetime Datetime value of end or instant, with adjustment to next day
midnight as needed

instantDatetime Datetime value of instant, with adjustment to next day midnight as
needed

period ModelObject of period element

periodHash Hash for comparing periods (start, end, instant, forever)

entity ModelObject of entity element

entityIdentifierElement ModelObject of entity identifier element

entityIdentifier (scheme value, identifier value)

entityIdentifierHash Hash of entityIdentifier

hasSegment True if a xbrli:segment element is present

segment ModelObject of segment element

hasScenario True if a xbrli:scenario element is present

scenario ModelObject of scenario element

dimAspects For formula and instance aspects processing, set of all dimensions
reported or defaulted.

dimsHash A hash of the set of reported dimension values.

segmentHash Hash of the segment, based on s-equality values

scenarioHash Hash of the scenario, based on s-equality values

nonDimHash Hash, of s-equality values, of non-XDT segment and scenario objects

contextDimAwareHash Hash of period, entityIdentifier, dim, and nonDims

contextNonDimAwareHash Hash of period, entityIdentifier, segment, and scenario (s-equal based)

 ModelContext Methods

dimValues(contextElement) ContextElement is segment or scenario, returns dict of
ModelDimension objects indexed by ModelConcept dimension object.

hasDimension(dimQname) True if dimension concept qname is reported by context (in either
context element), not including defaulted dimensions.

dimValue(dimQname) Returns ModelDimension object if dimension is reported (in either
context element), or QName of dimension default if there is a default,
otherwise None

dimMemberQname(
dimQname,
includeDefaults=False)

Returns QName of explicit dimension if reported (or defaulted if
includeDefaults is True), else None

nonDimValues(
contextElement)

ContextElement is either string or Aspect code for segment or
scenario, returns nonXDT ModelObject children of context element.

isPeriodEqualTo(context2) True if periods are datetime equal (based on 2.1 date offsets)

isEntityIdentifierEqualTo(
context2)

True if entityIdentifier values are equal (scheme and text value)

isEqualTo(context2,
dimensionalAspectModel=
None)

If dimensionalAspectModel is absent, True is assumed. False means
comparing based on s-equality of segment, scenario, while True means
based on dimensional values and nonDimensional values separately.

 ModelDimension Properties

dimensionQname QName of the dimension

Dimension ModelContext object of the dimension

isExplicit True if explicitMember element

isTyped True if typedMember element

typedMember Child ModelObject that is the dimension member element

memberQname explicitDimension member QName

Member ModelConcept object of the dimension member or None if typed

contextElement Parent element localName (segment or scenario)

 ModelDimension Methods

isEqualTo(
otherDimensionObject,
equalMode

True if explicit member QNames equal or typed member nodes
correspond, given equalMode (s-equal, s-equal2, or xpath-equal for
formula)

 ModelUnit Properties

measures Returns a tuple of multiply measures list and divide members list
(empty if not a divide element)

hash Hash of measures in both multiply and divide lists.

isDivide True if unit has a divide element

isSingleMeasure True for a single multiply and no divide measures

isEqualTo(otherUnit) True of measures are equal

value String value for view purposes, space separated list of string qnames of
multiply measures, and if any divide, a “/” character and list of string
qnames of divide measure qnames.

Model Formula Objects

ModelObject

ModelResource

ModelFormulaResource

ModelAssertionSet ModelVariableSet

ModelFormulaModelVariableSetAssertion

ModeExistanceAssertion ModelVariableAssertion ModelConsistencyAssertion

ModelParameter

ModelInstance

ModelVariable

ModelFactVariable

ModelGeneralVariable

ModelPreconditionModelFilter

1

*

1

*

1

*
* *

*

*

*

*

*

*

*

*

ModelMessage

*
*

*

*

*

*

ModeCustomFunctionSignature

ModeCustomFunctionImplementation

1
1

Figure 5. Model Formula Objects

The model of objects required for formula processing is represented by the lxml custom proxy objects

for the formula resources. Each object that may have XPath 2 expressions has a set of methods that

allow ‘crawling’ the formula graph to compile these expressions in advance of execution. Each filter has

a set of methods for determining the coverable aspects, and to execute the filter against a set of

candidate fact values. This significantly simplifies adding future aspects and aspect models, and

expanding the set of defined filters.

The execution of a set of formulas is provided as part of validation, or as an independent set of one-by-

one calls (such as required for function registry test cases)

ModelObject

ModelResource

ModelFormulaResource

ModelFilter

ModelTestFilter ModelPatternFilter

ModelAspectCover ModelBooleanFilter

ModelAndFilter

ModelOrFilter

ModelConceptName

ModelConceptPeriodType

ModelConceptFilterWithQname

ModelConceptCustomAttribute

ModelConceptDataType

ModelConceptSubstitutionGroup

ModelConceptRelation

ModelEntityIdentifier

ModelEntitySpecificIdentifier

ModelEntityScheme

ModelEntityRegexpIdentifier

ModelMatchFilter

ModelGeneral

ModePeriod

ModelDateTimeFilter

ModelPeriodStart

ModelPeriodInstant

ModelPeriodEnd

ModelForever

ModelInstantDuration

Figure 6. Model Formula Filter Objects, part 1

ModelObject

ModelResource

ModelFormulaResource

ModelFilter

ModelExplicitDimension

ModelTypedDimension
MemberModel

ModelRelativeFilter

ModelSegmentFilter

ModelScenarioFilter

ModelTestFilter

ModelAncestorFilter

ModelParentFilter

ModelLocationFilter

ModelSiblingFilter
ModelGeneralMeasures

ModelSingleMeasure

ModelNilFilter

ModelPrecisionFilter

*

*

Figure 7. Model Formula Filter Objects, part 2

Validation objects

Figure 8. Validation class objects

View
View facilities are segregated by the means of rendering, to modules dealing (at present) with CSV result

files (static views), GUI window panes (dynamic and interlinked views), and later Web Views (dynamic

interlinked and deferred-delivery views). Web based views will be added when time permits.

The typical instance and DTS views are synchronized for fact, relationship, concept, and other views of

the DTS. Selection events of any one view synchronize others that present the same object:

+validate()

ModelManager

ModelXbrl

1
*

-validation options

Validate

1 1

«call»

+validate from DTS()

+validate to DTS()

+validate linkbases()

+validate actions()

+validate namespace renamings()

+validate role renamings()

+validate report refs()

+validate concept and relationship references()

ValidateVersioningReport

+validate relationships()

+validate instance()

+validate concepts()

+validate DTS()

+validate Dimensions()

+validate calculations()

-validation options

ValidateXbrl

+validate instance()

+validate concepts()

+validate relationship sets()

+validate dimensions()

+validate filing DTS()

ValidateFiling

+validate instance()

ValidateHmrc

«call»

Versioning reports are entering use with the 2011 IFRS release. Here is a view of the 2010 and 2011 IFRS

taxonomies with the actions of the versioning report interlinked to IFRS-style (“ITI”) displays of the from

and to DTSes. Full validation of the versioning report is available, and was helpful in preparing the IFRS

2010/2011 report.

Synchronized viewing is provided for test suite operation. The intent is to encourage uniform access to

test suites by all users. As a test is interactively executed the pass/fail status and log of errors can be

viewed interactively. (There are scripts to run tests in batch mode too.)

Several view features extend the test suite concept to

training and exploration of XBRL formula. An RSS

Watch facility allows the user to specify a regular

expression or formula (as a set of assertions) to run

against the SEC live RSS feeds. This can be started,

resumed, or left to run in background.

There are configuration options, including which

feed, where to e-mail alerts to, and whether to

perform XBRL and Disclosure System validations

As this process runs, a view similar to the integrated test suite operation is shown, where one can see

the lastest published reports and the status of the testing:

Controller
In a standard definition, the controller receives input and initiates a response by making calls on model

objects. A controller accepts input from the user and instructs the model and viewers to perform actions

based on that input.

Arelle has these controllers: a superclass for shared common functionality, a command line based

controller, suitable for batch file integration, and a GUI controller for mouse-and-menu operation. The

GUI uses only graphic libraries distributed with the standard Python distribution (tkinter), so that it is

fully compatible and consistent on all of the Python platforms. The batch controller is primarily used for

scripted test operation and to perform formula and other tests on large collections of submissions.

Explanation of the use of the command line and GUI interfaces is provided on the product web site and

in contributed user manuals, and is deemed out of scope for this paper.

Cntlr.py:
Cntlr is a superclass for a singleton conroller object that represents a running Arelle instance.

 Methods

__init__(logFileName=None,
logFileMode=None,
logFileEncoding=None,
logFormat=None)

Initialize new controller object. Initialize directories, system functions
(such as clipboard, if provided), internal directory names, web cache,
model manager, default logger (if logFileName provided).

addToLog(message,
messageCode="", file="",
sourceLine="")

Add a text message to log, with optional message code, reference to
file and sourceLine.

showStatus(message,
clearAfter=None)

For GUI controllers, a message to be shown in status line, to keep user
aware of progress. If clearAfter (in milliseconds) is provided, remove
message after time elapses.

close(saveConfig=False) Close the controller, saving config changes if indicated.

 Properties

isMac True if Macintosh (False for Microsoft Windows and linux)

isMSW True if Microsoft Windows (False for Mac and linux)

config A dictionary of user preferences and interactions to be ‘pickled’ (per
python), such as screen positions, pane locations, validation
preference settings, formula parameter settings.

userAppDir Local directory for application (/libarary/Applications/Arelle on Mac,
Users AppInfo/Arelle on Windows)

webCache Web cache object for proxy and caching of web-accessed files

modelManager Model manager object for interface to model objects

Logger Default logger, if logFileName provided to initialization.

Comand-line controller use

The command-line controller provides a simple interface that could be used in a batch environment to

extract facts from instances for processing by non-XBRL aware tools.

The example script scripts/exportCsvFromXbrlInstance.bat uses the Arelle module CntlrCmdLine to

extract selected fields from an instance. The example which could be nested in a shell script for loop or

equivalently called within the API, specifies:

%ARELLE% --file "%INSTANCEFILE%" --csvFactCols "Label unitRef Dec Value EntityScheme

EntityIdentifier Period Dimensions" --csvFacts "%OUTPUTCSVFILE%" 1> "%OUTPUTLOGFILE%" 2>&1

The output here is in csv format, consisting of these possible fields (example noted as the string –

csvFactCols):

 Label: The standard label for the fact’s concept

 Name: The prefixed name of the fact’s concept

 contextRef: The id of the fact’s context, if any

 unitRef: The id of the fact’s unit, if any

 Dec: The decimals attribute value, if provided for the fact

 Prec: The precision attribute value, if provided for the fact

 Lang: The xml:lang attribute value, if provided for the fact

 Value: The fact’s value (text content of fact element)

 EntityScheme: The fact’s context entity identifier (if an item)

 EntityIdentifier: The fact’s context scheme (if an item)

 Period: The fact’s period (instant date, or star and end dates, if an item)

 Dimensions: All non-default dimension and explicit member prefixed names.

The implementation of this function provides an API pattern for coding something more customized.

Custom controller API examples

The source code example, examples/ExampleLoadValidate.py, is a controller which initializes a default

logger, loads an instance document (from which the DTS is discovered), and validates (with options to

include calculation linkbase validation and do that by inferringDecimals). Here is a walk-through its

source code:

this is the controller class

class CntlrValidateExample(Cntlr.Cntlr):

 # init sets up the default controller for logging to a file (instead of

to standard output via terminal window)

 def __init__(self):

 # initialize superclass with default file logger

 super().__init__(logFileName="c:\\temp\\test-log.txt”)

 def run(self):

 # create the modelXbrl by load instance and discover DTS

 modelXbrl = self.modelManager.load("c:\\temp\\test.xbrl")

 # select validation of calculation linkbase using infer decimals

option

 self.modelManager.validateInferDecimals = True

 self.modelManager.validateCalcLB = True

 # perfrom XBRL 2.1, dimensions, calculation

 self.modelManager.validate()

 # close the loaded instance

 self.modelManager.close()

 # close controller and application

 self.close()

if python is initiated as a main program, start the controller

if __name__ == "__main__":

 # create the controller and start it running

 CntlrValidateExample().run()

The next source code example, examples/ExampleLoadEFMValidate.py, is a controller which extends the

preceding example by initiating SEC Edgar Filer Manual (EFM) validation. (Other validation patterns,

such as GFM, may also be selected, as with the GUI main program) The comments reflect only what

differs from the preceding example:

class CntlrEfmValidateExample(Cntlr.Cntlr):

 def __init__(self):

 super().__init__(logFileName="c:\\temp\\test-log.txt)

 def run(self):

 # select SEC Edgar Filer Manual validation before validation (causes

file name and contents checking

 self.modelManager.validateDisclosureSystem = True

 self.modelManager.disclosureSystem.select("efm")

 modelXbrl = self.modelManager.load("c:\\temp\\test.xbrl")

 self.modelManager.validateInferDecimals = True

 self.modelManager.validateCalcLB = True

 # perfrom XBRL 2.1, dimensions, calculation and SEC EFM validation

 self.modelManager.validate()

 self.modelManager.close()

 self.close()

if __name__ == "__main__":

 CntlrEfmValidateExample().run()

The next source code example, examples/ExampleLoadSavePreLbCsv.py, is a controller which modifies

the previous example to use the view for CSV file output, to show the relationship set as a tree, titled

“Presentation”, for the parent-child arcrole (all link roles):

class CntlrCsvPreLbExample(Cntlr.Cntlr):

 def __init__(self):

 super().__init__(logFileName="c:\\temp\\test-log.txt)

 def run(self):

 modelXbrl = self.modelManager.load("c:\\temp\\test.xbrl")

 # output presentation linkbase tree as a csv file

 viewRelationshipSet(modelXbrl, "c:\\temp\\test-pre.csv",

"Presentation", "http://www.xbrl.org/2003/arcrole/parent-child")

 self.modelManager.close()

 self.close()

if __name__ == "__main__":

 CntlrCsvPreLbExample().run()

The next source code example, examples/CustomLogger.py, is a controller which provides a log handler

that can be modified to process log entries by the message string, name-value pairs, or as otherwise

appropriate. In this version the message text is sent to standard output (terminal window):

class CntlrCustomLoggingExample(Cntlr.Cntlr):

 def __init__(self):

 # no logFileName parameter to prevent default logger from starting

 super().__init__()

 def run(self):

 # start custom logger

 CustomLogHandler(self)

 modelXbrl = self.modelManager.load("c:\\temp\\test.xbrl")

 self.modelManager.validateInferDecimals = True

 self.modelManager.validateCalcLB = True

 self.modelManager.validate()

 self.modelManager.close()

 self.close()

import logging

class CustomLogHandler(logging.Handler):

 def __init__(self, cntlr):

 logger = logging.getLogger("arelle")

 self.level = logging.DEBUG

 self.setFormatter(logging.Formatter("[%(messageCode)s] %(message)s -

%(file)s %(sourceLine)s"))

 logger.addHandler(self)

 def emit(self, logRecord):

 # just print to standard output (e.g., terminal window)

 print(self.format(logRecord))

if __name__ == "__main__":

 CntlrCustomLoggingExample().run()

Data Mining

Data mining will be explored prior to Comparison, because comparison builds on the examples learned

from data mining. It is introduced by a set of mining patterns and examples how each may be

implemented in Arelle.

(In this paper mining is conducted on XBRL instances, without a separate process of Extraction,

Transformation, Database loading and Business Intelligence operations. The authors plan a future paper

on database and business intelligence integration.)

Mining objectives

We provide examples to demonstrate three goals

1. Determining validation or validity of some aspect of instances

2. Determining which instances have some text content or meet some criteria (ratio over

threshold)

3. Extraction of data to load analytic system (XBRL to database or analysis tool)

Further development of serious heavy-duty applications are likely to be programmatically controlled and

long running (batch programs), however Arelle has GUI functionalities to scan collections of data that

are:

1. Accessed by an RSS feed (SEC). Great when uniform access to external files is needed. Each

examined RSS item is treated the same as every other.

2. Accessed by XBRL testcase variation files. Useful for local files where there are parameters

unique to each variation, or specialized tests to perform on each.

API-based programmatic control is most likely to be used on large sets of data. We will examine

1. Command scripts (use of shell commands to control execution), may also support RPC callability

in integrated environments

2. API programmed (use of Python coding to control execution). Can also be extended to server

environments

Examination agents that will be considered are:

1. Validation sets (XBRL, dimensions, calculation linkbase, Filer Manual test suites)

2. CSV output of selected aspects (item, concept, period, dimensions)

3. Regular expressions for text matching of fact contents

4. Formula assertions to produce Boolean or messaged results

5. Formula output instances to provide translated, normalized, or derived facts

6. API coding to process each instance

RSS watch examples

The RSS watch is a GUI-based controller which can be used to assess:

 Validity

 Formula assertion results

Because it is user interface driven, it is useful for demonstrations, but less likely to be used on enormous

batches of data (those better for command line or API operation).

A user interface allows selection of options of what to watch for (validity, text matching, or formula

assertions), and a scrolling window shows results of examining the feed items according to the options.

The RSS feed processing access filings by downloading the zipped submission, and the class FileSource

can load xml without expanding the files, which provides reasonably fast operation despite the internet

transfer. (It would be vastly slower to download the ‘expanded’ xml files, or to unzip and expand

contents on the local file system after downloading.)

Determining RSS validity

The options dialog is accessed from the tools->RSS

feed->options menu, or right click on an RSS items

panel.

Here the options selected are XBRL 2.1,

dimensions, disclosure system rules (SEC EFM was

previously selected from the tool->validate menu),

and calculation linkbase roll-up (prefer decimals

was previously selected from the tools->validate

menu).

Alert on facts matching text would generate an e-

mail alert if one were specified.

When tools->RSS feed->start is selected, the RSS

feed currently on the source website (the SEC in

this case), is obtained, and any items whose

publication date is newer than the entry in “Latest pub date” is validated/tested/examined. To cause all

items to be reviewed regardless of last date entry, press the red X clear button on the “latest pub date”

row.

Here are the results of the above options (company filing and date visible, as well as validation issues

noted):

The Global Entertainment Holdings has two preferred labels missing and calculation inconsistences, ,

and the Zhong Wen filing has no issues noted.

Capturing or saving the log file allows these items to be examined or later processed, whereas providing

a custom log handler allows the message codes, file names, line numbers, XPath element-scheme

identifier of the element, and error message parameters to be post processed.

Searching for text

In this next example, we search for a text string,

“\saudit[\s\.,]”, e.g., the word audit preceded by a

whitespace and followed by whitespace, period, or

comma. (The goal was to exclude matching unaudited

or audited.) Each instance loaded has each fact value

(text contents) checked, with the following API in the

module WatchRSS.py.

These API steps, for the loaded instance of “modelXbrl”,

check the value (text contents) of each fact item, and use

the regular expression pattern search of Python. If

there’s a match, the from and to are used to display the

characters which were matched to the regular

expression:

for fact in modelXbrl.factsInInstance:

 v = fact.value

 if v is not None:

 m = matchPattern.search(v)

 if m:

 fr, to = m.span()

 msg = _("Fact Variable {0}\n context {1}\n matched text:

{2}").format(

fact.qname, fact.contextID, v[max(0,fr-20):to+20])

 modelXbrl.info("arelle.rssInfo",

 msg,

 modelXbrl=modelXbrl)

(The same API could be used in any prior skeletal examples to accomplish the same search).

Here’s a found match, note the tooltip at bottom of messages pane, where the mouse was hovering, for

HARBOR ISLAND’s 10-Q, where a contingencies disclosure noted adjustment upon audit by the Defense

… was matched:

Searching by formula examples

Next we’ll begin to develop formulas to match facts of interest.

Simple formula to extract form type used in each filing

Example formula linkbase examples\us-gaap-dei-

docType-extraction-frm.xml simply provides an assertion

message noting the form type of each filing. Here is the

full formula linkbase:

<?xml version="1.0" encoding="UTF-8"?>

<!-- linkbase with prefix declarations used below,

including us-gaaps of 2008-2011 -->

<link:linkbase

 xmlns:link="http://www.xbrl.org/2003/linkbase"

 xmlns:xbrli="http://www.xbrl.org/2003/instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:generic="http://xbrl.org/2008/generic"

 xmlns:validation="http://xbrl.org/2008/validation"

 xmlns:va="http://xbrl.org/2008/assertion/value"

 xmlns:variable="http://xbrl.org/2008/variable"

 xmlns:cf="http://xbrl.org/2008/filter/concept"

 xmlns:gf="http://xbrl.org/2008/filter/general"

 xmlns:msg="http://xbrl.org/2010/message"

xmlns:xfi="http://www.xbrl.org/2008/function/instance"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:dei-08="http://xbrl.us/dei/2008-03-31"

 xmlns:dei-09="http://xbrl.us/dei/2009-01-31"

 xmlns:dei-11="http://xbrl.sec.gov/dei/2011-01-31"

 xmlns:xbrldt="http://xbrl.org/2005/xbrldt"

xsi:schemaLocation="

 http://www.xbrl.org/2003/linkbase http://www.xbrl.org/2003/xbrl-linkbase-2003-12-31.xsd

 http://xbrl.org/2008/generic http://www.xbrl.org/2008/generic-link.xsd

 http://xbrl.org/2008/assertion/value http://www.xbrl.org/2008/value-assertion.xsd

 http://xbrl.org/2008/variable http://www.xbrl.org/2008/variable.xsd

 http://xbrl.org/2008/filter/concept http://www.xbrl.org/2008/concept-filter.xsd

 http://xbrl.org/2008/filter/general http://www.xbrl.org/2008/general-filter.xsd

 http://xbrl.org/2010/message http://www.xbrl.org/2010/generic-message.xsd

 ">

 <!-- arcroleRef's for arcroles used in the example -->

 <link:arcroleRef arcroleURI="http://xbrl.org/arcrole/2008/variable-set"

xlink:href="http://www.xbrl.org/2008/variable.xsd#variable-set" xlink:type="simple"/>

 <link:arcroleRef arcroleURI="http://xbrl.org/arcrole/2008/variable-filter"

xlink:href="http://www.xbrl.org/2008/variable.xsd#variable-filter" xlink:type="simple"/>

 <link:arcroleRef arcroleURI="http://xbrl.org/arcrole/2010/assertion-satisfied-message"

xlink:href="http://www.xbrl.org/2010/validation-message.xsd#assertion-satisfied-message"

xlink:type="simple"/>

 <link:arcroleRef arcroleURI="http://xbrl.org/arcrole/2010/assertion-unsatisfied-message"

xlink:href="http://www.xbrl.org/2010/validation-message.xsd#assertion-unsatisfied-message"

xlink:type="simple"/>

 <link:roleRef roleURI="http://www.xbrl.org/2008/role/link"

xlink:href="http://www.xbrl.org/2008/generic-link.xsd#standard-link-role" xlink:type="simple"/>

 <generic:link xlink:type="extended"

 xlink:role="http://www.xbrl.org/2008/role/link">

 <!-- a value assertion that is always true, so that every filing will match

 and produce an assertion message with the DEI document type found -->

 <va:valueAssertion xlink:type="resource"

 xlink:label="extract-DEI-DocumentType"

 id="extract-Document-Type"

 test="true()"

 aspectModel="dimensional" implicitFiltering="true"/>

 <!-- the message, providing the DEI document type, for each filing that has one -->

 <msg:message xlink:type="resource" xlink:label="DEI-document-type-message"

 xlink:role="http://www.xbrl.org/2010/role/message"

 xml:lang="en">DEI document type is {

 $docType

 }</msg:message>

 <!-- arc from value assertion to the message -->

 <generic:arc xlink:type="arc" xlink:arcrole="http://xbrl.org/arcrole/2010/assertion-

satisfied-message"

 xlink:from="extract-DEI-DocumentType" xlink:to="DEI-document-type-message" order="1.0"/>

 <!-- arc from the value assertion to the variable which is the document type -->

 <variable:variableArc xlink:type="arc" xlink:arcrole="http://xbrl.org/arcrole/2008/variable-

set"

 name="docType" xlink:from="extract-DEI-DocumentType" xlink:to="vDocType"/>

 <!-- filter for document type, by concept name, and 'required context' (all dimensions

defaulted) -->

 <variable:variableFilterArc xlink:type="arc"

xlink:arcrole="http://xbrl.org/arcrole/2008/variable-filter"

 complement="false" cover="true" xlink:from="vDocType" xlink:to="fDocType"/>

 <variable:factVariable xlink:type="resource" bindAsSequence="false"

 xlink:label="vDocType" />

 <!-- filter accepts 2009, 2009, or 2011 document type concept -->

 <cf:conceptName xlink:type="resource" xlink:label="fDocType">

 <cf:concept>

 <cf:qname>dei-08:DocumentType</cf:qname>

 </cf:concept>

 <cf:concept>

 <cf:qname>dei-09:DocumentType</cf:qname>

 </cf:concept>

 <cf:concept>

 <cf:qname>dei-11:DocumentType</cf:qname>

 </cf:concept>

 </cf:conceptName>

 <!-- Edgar Filer Manual's required context means all dimensions absent (defaulted, segment

must be empty -->

 <gf:general xlink:type="resource" xlink:label="fDocType"

 test="empty(xfi:segment(.))" />

 </generic:link>

</link:linkbase>

What is interesting to note is that the document type concept may be of several taxonomy namespace

years (2008, 9, and 11), and the concept name filter allows listing these alternatives. The general filter is

a trick to assure that only the concept which has no dimensions (segment being empty) is to be

considered. This is needed in most SEC filings to exclude matching facts where non-defaulted

dimensions are provided (and use of the dimension filter for this is problematical, because it would

require us to list all dimensions that might be used, but the list of dimensions varies from filer to filer).

The results of running this are a set of assertion messages (the extraction message appears above the

rssWatch filing that notes the results):

[message:extract-Document-Type] DEI document type is 10-Q - examples/us-gaap-dei-docType-

extraction-frm.xml 45

 [arelle:rssWatch] Filing CIK 0001120096

 company Sino Clean Energy Inc

 published 2011-08-23 06:41:59

 form type 10-Q/A

 filing date 2011-08-23

 period 2011-06-30

 year end 12-26

 results: pass - http://www.sec.gov/Archives/edgar/usgaap.rss.xml

 [message:extract-Document-Type] DEI document type is 10-Q – examples/us-gaap-dei-docType-

extraction-frm.xml 45

[arelle:rssWatch] Filing CIK 0000869484

 company CALL NOW INC

 published 2011-08-23 09:02:11

 form type 10-Q/A

 filing date 2011-08-23

 period 2011-06-30

 year end 12-31

 results: pass - http://www.sec.gov/Archives/edgar/usgaap.rss.xml

The formula working group has suggested structured messages, in which case the form type could be

output as a name-value pair to the python logging function, which could be captured by a custom logger

at a later date.

Ratios formula to extract ratios from each 10-K/10-Q filing

The most thorough analysis of XBRL ratios for SEC filings is in (Debreceny, et al, 2010). The paper

analyzes the likelihood that SEC filers have used well known concept names that can be used to identify

concepts of ratios, or have provided extension concepts of their own choosing. In the case of home-

made concepts, the calculation linkbase ancestry and descendancy can be often used to infer how the

filer chose their own concept for the expected ratio term. Such detective work could be done in a

formula, or in ordinary Python code, but we’ll begin with simple looking for terms that high percentages

of filers report.

 The example in examples/us-gaap-ratio-cash-frm.xml looks for these ratios:

 Cash ratio, reported by 97% of filers

o (Cash+Marketable Securities)/Current Liabilities

 Current ratio, “ 98%

o Current Assets/Current Liabilities

In the following extracts of this formula linkbase, the message construct provides the cash ration and

the current ratio. In both cases, since the divisor, currentLiabilities may not be found (probably because

it was reported by some extension or us-gaap concept not noted in the currentLiabilities filter), then

instead of raising a divide-by-zero error, not available is shown.

The dei document type fact is used to establish the ‘required context’ (that with no dimensions, and

only binds for a 10-K or 10-Q, due to this function in the general filter:
 index-of(('10-K', '10-Q'), .)

If it is bound, then it’s unit aspect is covered by the aspect cover filter, so that the rest of the variables,

which are monetary, can be implicitly filtered:
 <acf:aspectCover xlink:type="resource" xlink:label="fDocType">
 <acf:aspect>unit</acf:aspect>

 </acf:aspectCover>

Each of the monetary terms is an instant, which must be matched to the end of the document type’s

duration context, thus the period filter to match the end boundary of document type’s duration:
 <pf:instantDuration xlink:type="resource" xlink:label="fCash"
 boundary="end"

 variable="docType" />

The assertion, fact variables, and filters of this example are:

 <va:valueAssertion xlink:type="resource"

 xlink:label="cash-ratio"

 id="cash-ratio"

 test="true()"

 aspectModel="dimensional" implicitFiltering="true"/>

 <msg:message xlink:type="resource" xlink:label="cash-ratio-message"

 xlink:role="http://www.xbrl.org/2010/role/message"

 xml:lang="en">Cash ratio {

 if ($currentLiabilities ne 0) then

 (($cash + $marketableSecurities) div $currentLiabilities)

 else

 'not available'

 }, Current ratio {

 if ($currentLiabilities ne 0) then

 ($currentAssets div $currentLiabilities)

 else

 'not available'

 }</msg:message>

 <generic:arc xlink:type="arc" xlink:arcrole="http://xbrl.org/arcrole/2010/assertion-

satisfied-message"

 xlink:from="cash-ratio" xlink:to="cash-ratio-message" order="1.0"/>

 <!-- fact variable, arcs, and filters for document type, restricted to 10-K or 10-Q -->

 <variable:factVariable xlink:type="resource" bindAsSequence="false"

 xlink:label="vDocType" />

 <variable:variableArc xlink:type="arc" xlink:arcrole="http://xbrl.org/arcrole/2008/variable-

set"

 name="docType" xlink:from="cash-ratio" xlink:to="vDocType"/>

 <variable:variableFilterArc xlink:type="arc"

xlink:arcrole="http://xbrl.org/arcrole/2008/variable-filter"

 complement="false" cover="true" xlink:from="vDocType" xlink:to="fDocType"/>

 <cf:conceptName xlink:type="resource" xlink:label="fDocType">

 <cf:concept>

 <cf:qname>dei-11:DocumentType</cf:qname>

 </cf:concept>

 </cf:conceptName>

 <!-- Edgar Filer Manual required context means all dimensions absent (defaulted)

 and only bind for a 10-K/10-Q filing (don't bind for other form types) -->

 <gf:general xlink:type="resource" xlink:label="fDocType"

 test="empty(xfi:segment(.)) and index-of(('10-K', '10-Q'), .) " />

 <!-- must cover unit because this variable is a string type -->

 <acf:aspectCover xlink:type="resource" xlink:label="fDocType">

 <acf:aspect>unit</acf:aspect>

 </acf:aspectCover>

 <!-- cash -->

 <variable:factVariable xlink:type="resource" bindAsSequence="false"

 xlink:label="vCash" />

 <variable:variableArc xlink:type="arc" xlink:arcrole="http://xbrl.org/arcrole/2008/variable-

set"

 name="cash" xlink:from="cash-ratio" xlink:to="vCash"/>

 <variable:variableFilterArc xlink:type="arc"

xlink:arcrole="http://xbrl.org/arcrole/2008/variable-filter"

 complement="false" cover="true" xlink:from="vCash" xlink:to="fCash"/>

 <cf:conceptName xlink:type="resource" xlink:label="fCash">

 <cf:concept>

 <cf:qname>us-gaap-11:Cash</cf:qname>

 </cf:concept>

 <cf:concept>

 <cf:qname>us-gaap-11:CashAndCashEquivalentsAtCarryingValue</cf:qname>

 </cf:concept>

 </cf:conceptName>

 <!-- Must match period-end of documentType period -->

 <pf:instantDuration xlink:type="resource" xlink:label="fCash" boundary="end"

variable="docType" />

 <!-- marketable securities -->

 <variable:factVariable xlink:type="resource" bindAsSequence="false" fallbackValue="0"

 xlink:label="vMarketableSecurities" />

 <variable:variableArc xlink:type="arc" xlink:arcrole="http://xbrl.org/arcrole/2008/variable-

set"

 name="marketableSecurities" xlink:from="cash-ratio" xlink:to="vMarketableSecurities"/>

 <variable:variableFilterArc xlink:type="arc"

xlink:arcrole="http://xbrl.org/arcrole/2008/variable-filter"

 complement="false" cover="true" xlink:from="vMarketableSecurities"

xlink:to="fMarketableSecurities"/>

 <cf:conceptName xlink:type="resource" xlink:label="fMarketableSecurities">

 <cf:concept>

 <cf:qname>us-gaap-11:MarketableSecuritiesCurrent</cf:qname>

 </cf:concept>

 </cf:conceptName>

 <pf:instantDuration xlink:type="resource" xlink:label="fCash" boundary="end"

variable="docType" />

 <!-- current liabilities -->

 <variable:factVariable xlink:type="resource" bindAsSequence="false" fallbackValue="0"

 xlink:label="vCurrentLiabilities" />

 <variable:variableArc xlink:type="arc" xlink:arcrole="http://xbrl.org/arcrole/2008/variable-

set"

 name="currentLiabilities" xlink:from="cash-ratio" xlink:to="vCurrentLiabilities"/>

 <variable:variableFilterArc xlink:type="arc"

xlink:arcrole="http://xbrl.org/arcrole/2008/variable-filter"

 complement="false" cover="true" xlink:from="vCurrentLiabilities"

xlink:to="fCurrentLiabilities"/>

 <cf:conceptName xlink:type="resource" xlink:label="fCurrentLiabilities">

 <cf:concept>

 <cf:qname>us-gaap-11:LiabilitiesCurrent</cf:qname>

 </cf:concept>

 </cf:conceptName>

 <pf:instantDuration xlink:type="resource" xlink:label="fCurrentLiabilities" boundary="end"

variable="docType" />

 <!-- current assets -->

 <variable:factVariable xlink:type="resource" bindAsSequence="false" fallbackValue="0"

 xlink:label="vCurrentAssets" />

 <variable:variableArc xlink:type="arc" xlink:arcrole="http://xbrl.org/arcrole/2008/variable-

set"

 name="currentAssets" xlink:from="cash-ratio" xlink:to="vCurrentAssets"/>

 <variable:variableFilterArc xlink:type="arc"

xlink:arcrole="http://xbrl.org/arcrole/2008/variable-filter"

 complement="false" cover="true" xlink:from="vCurrentAssets" xlink:to="fCurrentAssets"/>

 <cf:conceptName xlink:type="resource" xlink:label="fCurrentAssets">

 <cf:concept>

 <cf:qname>us-gaap-11:AssetsCurrent</cf:qname>

 </cf:concept>

 </cf:conceptName>

 <pf:instantDuration xlink:type="resource" xlink:label="fCurrentAssets" boundary="end"

variable="docType" />

The results of running this assertion set are shown here for one filing

[message:cash-ratio] Cash ratio 0.66, Current ratio 1.87 - examples/us-gaap-dei-ratio-cash-

frm.xml 45

[arelle:rssWatch] Filing CIK 0001089063

 company DICKS SPORTING GOODS INC

 published 2011-08-24 13:49:40

 form type 10-Q

 filing date 2011-08-24

 period 2011-07-30

 year end None

Output instance approach of using formula linkbase

These formula linkbase examples are shown in the form of assertions that create output messages. The

messages may be paramterized, structured, and processed by a logging system for capture.

An alternative use of formula linkbase is to produce an output instance document for each formula

processed. Each of the extracted values and computed ratios could be entered to such an output

instance designed to capture facts of multiple submissions. In such a case the output instance could

have a compact taxonomy of just the extracted concepts and a concept for each ratio, allowing facts of

many instance documents to be aggregated together in a simple output instance. The facts of each

extraction could reflect the source in the filing entity and document type period, or have some other

scheme. Arelle has the needed functionality to implement such an approach, either as a future addition

to the RSS watch feature, or as an API based Controller module.

Finding the un-expected concepts for standard terms in filer extension taxonomies

In (Debreceney, et al. 2010, section “Alternative Elements”), a set of patterns is described to search for a

semantic match, particularly due to filer’s choices of concepts that may not represent the expected us-

gaap concept, either due to choice of a more-specific us-gaap concept, or providing an extension

taxonomy concept. These patterns suggest checking the parent and/or child calculation elements in

attempt to identify the desired element.

Formula linkbase provides a concept relation filter and a set of corresponding functions that may be

used to construct custom functions for these patterns. (There was not sufficient time in preparing this

paper to develop examples.)

Arelle’s python API can likewise be used for the same purpose, if the data mining engineer were to

implement the task in the API instead of the formula linkbase. If a set of graph patterns were pre-

determined for the alternative element search, Python’s set-algebra features may provide very fast

execution of such an algorithm.

Normalizing mined data for comparability

This section has used a stepwise approach to mining, one instance at a time, without regard for how the

results were comparable to another instance. The goal of data mining may be to prepare for analytics

that must relate the mined ratios and numbers to other instances, of possibly different reporting

periods, and of certainly different filing taxonomies. The next section addresses initial ideas of

comparability.

Comparability

As this paper is being written the XBRL Comparability Task Force is engaged in developing a framework

for comparability, which will, when available, enhance the ideas presented here.

Direct comparison of small sets of instances

If a comparison operation is specific to a small number of instances, and the extracted and derived

terms to be obtained are well known, it may be appropriate to build a formula linkbase for this purpose.

The multi-instance capability of formula linkbase allows a number of instance documents, each with

their own and possibly independent DTS, to be processed together by assertions and formulas that

generate output instances.

A variable and its filters may specify the source of its inputs as one or more instances. This allows either

accepting multiple values for one variable from different instances, or coding multiple variables to each

accept one term from one instance. If, for example, averaging a fact of a concept known to stably exist

over a set of periods, with compatible dimensions (or none), one variable could obtain a single sequence

from all input instances. On the other hand, if implicitly aligning periods, dimension values, and entities

and units, were difficult, it may be more appropriate to use separate variables for each source instance.

Hand coding such a formula linkbase may be reasonable for a well known and small set of data (such as

the referenced Debreceny 2010 ratios), but not possible for a large set of data (to provide general

investor comparability of an entire financial report).

Automated comparison of large sets of instances

Each filing in a large set of comparison candidates will need to be evaluated, ranked in suitability for

mining of the desired terms, and then populated to an analytical toolset (such as found in BW/BI).

Normalization may need to adjust concepts even in same filing (extensions, choice of concept), use of

relationships to infer semantic meaning of names. The ancestor/descendant patterns previously

referenced may be used to create metrics of normalizability for each comparison candidate.

About the authors:

Herm Fischer has contributed to the XBRL base specification, and its dimensions, formula, versioning, and
rendering modules. He currently chairs the Formula Working Group and is vice chair of the Base Specification and
Maintenance Working Group. He contributed to the 2007 XBRL US GAAP Project. Formerly with UBmatrix, Inc, he
developed Taxonomy Designer, formula editors and processors, and XBRL processors. He participated in
development of SEC validation and its test suite.

Diane Mueller is the founder/president of XBRLSpy Research Inc. She is an Open Source/Open Standards
Evangelist, and a XBRL Implementation Strategist. Currently serves as the XBRL Canada representative to the XBRL
International Steering Committee and Best Practices Board, and chairs the Technical Working Group on Rendering
responsible for the Inline XBRL Specification. She is a frequent commentator and lecturer on Financial Compliance,
XML Standards and Semantic Web technologies.

References

Fischer, H., and Mueller, D. 2011. Open Source & XBRL: the Arelle® Project, 2011 Kansas University XBRL
Conference, April 29-30 2011, Overland Park, Kansas. Avalable from:
http://web.ku.edu/~eycarat/myssi/_pdf/4-Fischer%20-Mueller-Open-source-ArelleProject.pdf

Debreceney, R., Alessandro, d’E., Felden, C., Farewell, S., and Piechocki M. 2011. Feeding the
Information Value Chain: Deriving Analytical Ratios from XBRL filings to the SEC, 2011 Kansas University
XBRL Conference, April 29-30 2011, Overland Park, Kansas. Avalable from:
http://web.ku.edu/~eycarat/myssi/_pdf/2-Debreceny-XBRL%20Ratios%2020101213.pdf

http://web.ku.edu/~eycarat/myssi/_pdf/4-Fischer%20-Mueller-Open-source-ArelleProject.pdf
http://web.ku.edu/~eycarat/myssi/_pdf/2-Debreceny-XBRL%20Ratios%2020101213.pdf

