
Open	Source	&	XBRL:	the	Arelle®	Project	
Authors: Herm Fischer, Mark V Systems Limited and Diane Mueller, XBRLSpy Research Inc.

The	Problem	
Currently, there are a number of proprietary XBRL processors on the market each with varying degrees
of conformity to the XBRL 2.1 specification and differing levels of implementation, integration, and
support for XBRL extension modules, Filer Manual tests, and test suites. A quick look at
http://edgardashboard.xbrlcloud.com/edgar-index.html on XBRLCloud, will give insight into usage and
results with the wide variety of tools available for creating XBRL filings. Each has a slightly different
approach to document creation, varying levels of validation leading to a wide range of errors and
warnings, and different transparency in its implementation and degree of conformance. However, this
should not be seen a US centric problem, as the same issues arise in each jurisdiction where XBRL has
been adopted. XBRL software developers struggle through the XBRL 2.1 specification, the companion
dimensions specification, the Edgar and Global Filer Manuals, and make valiant attempts at
implementing conformant processors. It is hard to know which may be more successful than others,
because the users don’t usually have integrated access to the test suites to check conformance, or the
the various extension modules such as versioning, rendering and formula. This situation sparks frequent
XBRL online and blog discussion of variation in levels of conformity in XBRL instances and tools that
consume and validate them.

We believe there is a need to supply software developers with a cohesive, easy-to-use programming
model for building XBRL-compliant applications and curb the proliferation of non-conformant XBRL
processors. Developers new to XBRL are forced to learn and interpret the entire XBRL 2.1 specification
just to build a simple application. Advanced XBRL developers are forced to write tedious plumbing code;
and tools authors are limited in what they can do to simplify the experience due to the underlying
complexity.

XII itself is dependent on member vendors to implement and test changes to the specification or new
modules, constraining XII to vendor member’s resource availability and interest levels in specific aspects
of the new modules – which are not always in line with the market needs and requirements to drive
adoption of XBRL.

Our	Approach	
In order to advance the adoption and resolve the interoperability and conformance issues, we have
launched an open source software effort to facilitate the ongoing development of XBRL-related
technology resources that will be freely available to the public obtain, use, redistribute, and modify.

The XML standard, the underpinning technology of XBRL, is an open source project, with a strong, stable
open source community supporting it’s care and maintenance. "Open source" is defined as: freely
available technology licensed under terms compatible with Version 1.9 (or later) of the Open Source
Definition, as established by the Open Source Initiative (see http://www.opensource.org/).

Using Python, an open source dynamic language known for high productivity, we have developed a
highly portable software library for parsing and validating XBRL documents, and released it under the
Apache 2 license. This will remove significant barriers to entry into the XBRL market; enable the
development of reliable, stable and conformant financial software applications that would promote the
adoption of XBRL technology across the globe.

The	Arelle	Project

Arelle is a project to provide an easy to use open source facility for XBRL. The intent began to meet
needs that are not commercially viable, such as to support under-development extension modules and
test suite facilities, in a compact framework, and to support academic training and projects.

Support for XBRL versioning was an initial goal, to provide both a validation tool for versioning reports
and a production tool to generate the basics of a versioning report that can be inferred by diffing two
DTSes.

As the project evolved, Edgar and Global Filer Manual validation, Base Specification, Dimensions,
Generic linkbase, Formula, and Eurofiling rendering linkbase, were added. Additional features were
added to allow formula experimentation with existing real filings, by an RSS Watch facility.

Arelle fully integrates test cases with the object models for XBRL instances and DTSes. This allows
continual verification of tool performance as it is extended and adapted by its users.

Users can explore the functionality and features from either an interactive GUI or command line
interface, and can develop their own controller interfaces as needed.

Arelle is supported on the website http://arelle.org

Background	

Arelle’s origin was a need to provide tooling focusing on early support for technical development of
standards extension modules. These stages require a way to error check and validate prototype test
suites facilities before commercial tools become available.

For this reason test case operation has been fully integrated to the object model and tool interfaces.

Although there has been a long and steady interest in open source facilities, the importance of this need
was highlighted by the XBRL Standards Board survey project, which found two relevant and consistent
feedback points, (1) the request for open source facilities, and (2) the request for an independent API.

An advantage of open source is that fresh bright minds will, from time to time, come to look at the
architecture and structure and see things that those, who are too deep in the forest to see the trees,
may have overlooked. It is expected that the architecture will evolve over time and lead to continual
product evolution and improvement.

Arelle was designed to be a minimalist facility, as a counter-response to experience with other APIs that
are large, hard to learn, and not directly supportive of the XBRL extension modules. In this case, the API
is compact and implemented with a bare minimum of coding. Arelle is platform independent,
implemented in Python, completely from scratch.

To prove the viability of the initial API, it was suggested to assure that SEC Edgar Validation and the
Versioning module were implementable, particularly as these have test suites. It was considered lesser
priority to replicate functions widely available in other products, such as XML validation (this will be
provided later on).

About the name: the sound of pronouncing XBRL makes a pseudonym, Ecksbee Arelle. Arelle is found
on baby name websites as a valid girl’s name.

The implementation is in Python 3.1, and is intended for Windows (any recent), Mac OS-X 10.3 to 10.6,
or any Unix or Linux. Memory required is about twice of comparable commercial products, e.g., a US-
GAAP filing might need 30-60MB (x32 ok), comparing two 2011 us-gaaps for versioning report
generation might take 4.5G (x64 needed). Loading speed about half of commercial products.

Architecture	
An MVC (model-view-controller) architecture has been selected.

Model represents the objects of XBRL: instances, inline-instances, DTS schemas and linkbases, individual
test cases, test suites, formula, and versioning reports. The model has a modelManager, which
manages the set of models loaded at a time.

The controller represents interaction with external users and external programmatic control, such as by
GUI, web, and command line.

A view represents pre-defined API interactions with the model, to present object views for GUI, web,
and textual use (e.g., CGI files).

A number of utility functions are included to make the code easier to read and more compact. These
include XML utilities, URI utilities, and a customized Python web cache.

Validation operations are factored out to separate classes, as they are quite large to include with the
objects that they validate for. Validation operations have been integrated to prevent redundant passes
through object models.

Model	
The intent of the model is to provide independence of the eventual serialization of XBRL, which for now
is XML. The XSB Strategic Initiatives project has a task to develop an SQL model, which may for a basis
for an alternate serialization to be consumed by Arelle.

From the top down, there is the necessity to process multiple instances (DTSes) of XBRL concurrently. A
ModelManager coordinates them for the Controller, and is the interface to utility functions (such as the
Python web cache), and application specific formalisms (such as the SEC restrictions on referencable
base taxonomies).

Each loaded instance, DTS, testcase, testsuite, or versioning report is represented by an instance of a
ModelXbrl object. The ModelXbrl object has a collection of ModelDocument objects, each representing
an XML document (for now, alternate serialization whenever that time comes). One of the
modelDocuments of the ModelXbrl is the entry point (of discovery or of the test suite).

Each modelDocument represents a set of modelObjects, which are specialized as follows according to
the type of document. There is also one specialization of modelDocument, which is a modelVersReport,
as the versioning report has different objects and methods than from any other XBRL modelDocument.

There is also an inherently different model, modelRelationshipSet, which represents an individual base
or dimensional-relationship set, or a collection of them (such as labels independent of extended link
role).

The model objects are, from general to more specific, models representing a superclass XBRL object, and
models representing XBRL role/arcrole types, schema objects, concepts, attributes, and types; for Xlink,
links, resources, and locators. Specialized resources represent formula linkbase objects, rendering
linkbase objects, and versioning objects. Model relationships represent arcs and are suitable both for

effective arc base and relationship sets, and for determining of ineffective arcs (for Filer submission
validation). Instance objects include facts (instance and inline XBRL), contexts, dimensions and units.
Testcase objects represent fully integrated testcase variation objects.

Validation operations are separated from the objects that are validated, because the operations are
complex, interwoven, and factored quite differently than the objects being validated. There are these
validation modules at present: validation infrastructure, test suite and submission control, versioning
report validation, XBRL base spec, dimensions, and formula linkbase validation, Edgar and Global Filer
Manual validation.

View	
View facilities are segregated by the means of rendering, to modules dealing (at present) with CSV result
files (static views), GUI window panes (dynamic and interlinked views), and later Web Views (dynamic
interlinked and deferred-delivery views). Web based views will be added after extension modules are
completed.

The typical instance and DTS views are synchronized for fact, relationship, concept, and other views of
the DTS. Selection events of any one view synchronize others that present the same object:

Versioning reports are entering use with the 2011 IFRS release. Here is a view of the 2010 and 2011 IFRS
taxonomies with the actions of the versioning report interlinked to IFRS-style (“ITI”) displays of the from
and to DTSes. Full validation of the versioning report is available, and was helpful in preparing the IFRS
2010/2011 report.

Synchronized viewing is provided for test suite operation. The intent is to encourage uniform access to
test suites by all users. As a test is interactively executed the pass/fail status and log of errors can be
viewed interactively. (There are scripts to run tests in batch mode too.)

Several view features extend the test suite concept to
training and exploration of XBRL formula. An RSS
Watch facility allows the user to specify a regular
expression or formula (as a set of assertions) to run
against the SEC live RSS feeds. This can be started,
resumed, or left to run in background.

There are configuration options, including which
feed, where to e-mail alerts to, and whether to
perform XBRL and Disclosure System validations

As this process runs, a view similar to the integrated test suite operation is shown, where one can see
the lastest published reports and the status of the testing:

	

Controller	
In a standard definition, the controller receives input and initiates a response by making calls on model
objects. A controller accepts input from the user and instructs the model and viewers to perform actions
based on that input.

Arelle has these controllers: a superclass for shared common functionality, a command line based
controller, suitable for batch file integration, and a GUI controller for mouse-and-menu operation. The
GUI uses only graphic libraries distributed with the standard Python distribution (tkinter), so that it is
fully compatible and consistent on all of the Python platforms. The batch controller is primarily used for
scripted test operation and to perform formula and other tests on large collections of submissions.

Features	for	Academia	
A goal of this project is a platform for XBRL training. This is supported by two key features distinguishing
from other products, a compact code base, and a unified object model.

The size of XBRL platforms in their source code form is critical in the ability to support student
exploration of features. When size exceeds what can be explored rapidly, the effort to dive into a

product becomes out of the scope of student project periods. Arelle owes its compactness to the
Python features such as set operations and compact expressiveness, and its code appears to be smaller
by the usual ratio claimed for Python (six-fold reduction of code size is often claimed for Python).

The internal architecture supports academic training by being based on a single set of integrated
models, with extension features such as formula, versioning, and rendering, fully integrated.

Development	Environment	

There are several Python-based development environments, but most XBRL practitioners have spent
their lives with Java. Eclipse can be configured for Python, and is compatible with Arelle.

The project is hosted at http://arelle.org, including source code, documentation, and a user forum.

About the authors:

Herm Fischer has contributed to the XBRL base specification, and its dimensions, formula, versioning, and
rendering modules. He currently chairs the Formula Working Group and is vice chair of the Base Specification and
Maintenance Working Group. He contributed to the 2007 XBRL US GAAP Project. Formerly with UBmatrix, Inc, he
developed Taxonomy Designer, formula editors and processors, and XBRL processors. He participated in
development of SEC validation and its test suite.

Diane Mueller is the founder/president of XBRLSpy Research Inc. She is an Open Source/Open Standards
Evangelist, and a XBRL Implementation Strategist. Currently serves as the XBRL Canada representative to the XBRL
International Steering Committee and Best Practices Board, and chairs the Technical Working Group on Rendering
responsible for the Inline XBRL Specification. She is a frequent commentator and lecturer on Financial Compliance,
XML Standards and Semantic Web technologies.

